조건문과 반복문은 프로그래밍 언어를 단순한 계산기에서, 프로그래밍을 할 수 있는 도구로 만들어 주는 열쇠일 것이다. 오늘은 반복문을 사용할 때 많은 프로그래머들이 (익숙해서든, 익숙하지 않아서든) 잊어버리는, 루프 불변조건(Loop-invariant)에 대해 다뤄 보려고 한다. 최대한 이해하기 쉽게 작성하려고 했다.


 


프로그래밍을 하면서 가장 많이 만나는 것 중 하나는 반복문이다. 반복문은 C/C++과 Python에서 다음과 같은 꼴이다. (여기서 i++ 은 i += 1, i를 i의 다음숫자로 바꾼다.) 이다.

C, C++: for(int i=0; i<n; i++)
Python: for i in range(n):

이 글에서는 C, C++ 스타일의 반복문을 많이 사용하여 설명할 것이다. 이런 형태의 반복문을 보지 못한 사람들을 위하여, 그리고 다시 한번 반복문을 생각하기 위하여 C/C++ 스타일의 for문 부터 다시 한번 짚고 지나가자.




C/C++스타일의 반복문은 다음과 같이 생겼다.

for( init_statement; condition; iteration_expression )
{
	statement;
}

이것을 풀어서 쓰면, 다음과 같은 모양이다. (실제로는 Scope가 달라진다.)

init_statement;
while(condition)
{
	statement;
	iteration_expression;
}

while(p)는, p를 만족할 동안 정해진 내용을 반복한다는 뜻이므로 (정해진 내용을 만족하면 빠져나오고, 만족하지 않으면 while문의 처음부터 다시 시작한다.)

 for(int i = 0; i < n; i++) f(i); 

라고 적힌 코드는,

int i = 0;
while(i < n)
{
	f(i);
	i++;
}

의 일을 하게 되고, 이는 실제로 반복을 해보면 이는 실제로 손으로 해보면, f(0)을 호출하고, i가 1 늘어서 f(1)을 호출하고... 이를 반복하여 f(0), f(1), ..., f(n-1)까지의 함수 호출을 하는 것을 알 수 있다. 그리고 이는 Python에서의 range를 사용한 루프와 같다. 한가지 차이점이 있다면, C, C++의 for loop에서는  statement가 i를 바꿔서는 안된다.




반복문을 이용해서 코드를 하나 작성해 보자. 반복문의 예제 코드 중 하나이다. 배열의 길이 N과 배열 A를 받아서 최댓값을 반환하는 함수를 만들어 보자. (여기서, N은 1 이상임이 보장되어 있고, A는 0번째 원소부터 N-1번째 원소까지 있다.)

int getMax(int N, int A[]) { int maxv = A[0]; for(int i=1; i<N; i++) if(maxv < A[i]) maxv = A[i]; return maxv; }

굉장히 평범하고 많은 사람이 작성할법한 코드이다. 그럼 이 코드가 맞다는 것을 설명해보자. 우리는 수학적 귀납법을 사용할 것이다.

코드를 while문을 이용하여 같은 코드로 작성하면 다음과 같이 된다.:

int getMax(int N, int A[])
{
	int maxv = A[0];
	int i = 1;
	while(i < N)
	{
		if(maxv < A[i])
			maxv = A[i];
		i++;
	}
	return maxv;
}

증명할때, 루프 불변조건(loop-invariant)이라는 개념을 도입할 것이다. 이 루프 불변조건은 루프가 시작할때 유지되는 조건들을 의미한다. 이 문제에서의 루프 불변조건은, maxv의 값이 A[0]부터 A[i-1]까지의 최댓값을 가지고 있다는 것이다. 주석을 달아서 자세하게 확인해 보자.

int getMax(int N, int A[])
{
	int maxv = A[0];
	int i = 1;
	// 1 - maxv의 값은 A[0]
	while(i < N)
	{
		// 2 - maxv의 값은 A[0]부터 A[i-1]까지의 최댓값
		if(maxv < A[i])
			maxv = A[i];
		// 3 - maxv의 값은 A[0]부터 A[i]까지의 최댓값
		i++;
		// 4 - maxv의 값은 A[0]부터 A[i-1]까지의 최댓값
	}
	// 5 - maxv의 값은 A[0]부터 A[N-1]까지의 최댓값.
	return maxv;
}

1번 조건이 만족한다는 것은 maxv가 A[0]이고, 숫자가 하나만 있으면 그 숫자가 최댓값이라는것에서 알 수 있다.

2번 조건은, i = 1일때는 1번조건과 같다.

3번 조건은, 2번 조건에서 A[i]가 A[0]부터 A[i-1]까지의 최댓값보다 크면, A[i]가 다른 모든 수 보다 크므로 최댓값이다. 아닐 경우에는, A[0]부터 A[i-1]까지의 최댓값중에 A[i]보다 큰 값이 있으므로 최댓값이 유지될 것이다.

4번 조건은, 3번 조건에서 i값이 1커졌기 때문에 숫자를 맞춘 것이다.


이 4번 조건은, 만약에 루프를 빠져나가지 않는 다면, 다시 2번 조건에 들어가게 된다. 그리고 여기서 발견할 수 있는 흥미로운 사실은 i가 1이 커졌다는 것이다! 이것을 계속 반복되면, 루프를 빠져나올 때 i = N이기 때문에, 5번 조건 역시 만족하게 된다. 이 증명은 수학적 귀납법과 맥락을 같이한다.

 

루프 불변조건은 모든 루프문에서 다양하게 사용된다. 코딩을 하면서, 루프 불변조건은 루프를 분석하는데 굉장히 강력한 도구이고, 디버깅을 할 때도 강력하게 사용될 수 있다.(루프 불변조건을 assert하는 것으로, 논리단계를 제대로 밟고 있는지 아닌지 확인할 수 있다.) 그리고 루프가 포함된 함수를 분석하는데에 핵심이 된다.




루프 불변조건에 대해 글을 썼다. 수학적 귀납법과 같은 방식으로 생각을 해서, 증명을 한다고 생각하면 논리가 잡히기 시작할 것이다.

다음 게시글에는 동적 계획법에 대해 설명하려고 한다. 아래쪽에 풀어볼만한 연습문제들을 남겨 놓겠다. 풀이 등에 대한 질문이 있거나, 게시글에 개선할 사항은 덧글로 남겨줬으면 한다.

 



  • 배열이 있을 때, 배열의 모든 원소의 합을 구하는 프로그램을 작성하고, 그 프로그램이 올바르다는 것을 증명하여라.
  • O(n2)정렬로 유명한 삽입 정렬, 버블 정렬 그리고 선택 정렬이 올바르게 작동한다는 것을 증명하여라.
  • 최대 힙(max heap)으로 작성된 우선순위 큐가 올바르게 동작한다는 것을 증명하여라.
  • 다익스트라 알고리즘을 보고, 루프 불변조건을 이용하여 다익스트라 알고리즘이 올바르게 동작함을 증명하여라.

 



최대 힙, 우선순위 큐와 다익스트라 알고리즘에 대한 설명은 추가로 작성해서 게시글로 올리겠다.




이제까지의 모든 Logical Thinking 게시글 보기: http://blog.kyouko.moe/8



  1. SOYONGKIM 2018.10.18 11:15 신고

    안녕하세요 글 잘 읽었습니다.
    읽다가 조금 이해가 잘 안되서 질문 드려봅니다.
    1. "maxv는 A[0]~A[i-1]까지의 최대값"이라는 것, 즉 루프 불변조건은 귀납법처럼 처음에 이러한 조건을 가정하고 검증에 들어가는 건가요?
    2. 루프 불변조건은 코드의 검증을 위해서만 사용되나요? 아니면 처음 코드를 작성할때도 사용되나요? 다시 말해 루프 불변조건을 먼저 설정하고 이에 맞춰서 코드를 작성하는 것도 가능한가요? 있다면 어떻게 해야할까요?
    (매번 코딩할때 마다 무한루프나 빠진 조건때문에 답이 이상하게 나오는 등 디버깅하는 시간이 오래걸려 다른 접근법을 찾고 있습니다..)

예전에 트위터에 글을 쓰겠다고 말 해 놓고, 쓰지 않은 글들이 존재한다. 그 중 하나를 지금부터 다시 시작해보려고 한다.

아마 첫 두개는 이전 포스트의 내용을 다듬는 것이 될 것이다.



참고로 이 글에는 이해하기 어려울 수 있는 수학적인 내용이 들어있다. 이해하지 않고 읽기만 해도 되는 내용에는 표시를 해놓겠다. 이외의 내용은 최대한 이해하기 쉽게 작성하려고 했다.




프로그래머들은 대개로 셀 수 있는 것들을 다룬다. 그리고 객체에 번호를 붙이는 것에 익숙해져 있다. 예를들면 배열의 0번째 원소, 1번째 원소, 2번째 원소... 같은 식으로 하나 하나씩 배열의 원소와 자연수를 하나하나씩 대응을 해 준다.

우리는 이 "자연수"에 대해서 조금 더 알아보려고 한다. 여기서 말하는 자연수는 편의상 0을 포함하는 개념이다.


자연수를 정의할 때, 가장 많이 쓰는 방법은 페아노 공리계이다. 페아노 공리계는 다음과 같이 9개의 조건을 만족하는 집합이다. (=과 S를 정의한다.)

  1. 자연수 x에 대해, x = x
  2. 자연수 x, y에 대해, x = y 이면 y = x
  3. 자연수 x, y, z에 대해, x = y이고 y = z 이면 x = z
  4. 자연수 x에 대해, x = y 이면 y도 자연수
  5. 0은 자연수
  6. 임의의 자연수 x에 대해, S(x)도 자연수
  7. 임의의 자연수 x에 대해, S(x) ≠ 0
  8. 임의의 자연수 x, y에 대해, S(x) = S(y) 이면 x = y
  9. 0이 K의 원소이고, x가 K의 원소일 때, S(x)가 K의 원소이면 K는 자연수 집합

 

페아노 공리계를 처음 본 사람이 바로 이해를 하기는 힘들것이다. 페아노 공리계를 다시 쉽게 설명을 해보도록 하자.

0은 자연수이다. 0의 다음 수인 1도 자연수이고, 1의 다음 수인 2도 자연수이고, 2의 다음 수인 3도 자연수이고, ... 이렇게, 숫자들을 전부 다 모은 것이 자연수라는 것이다. (이것은 위의 페아노 공리계에서의 5와 9에 해당한다.) 그리고, 다양한 예외처리들이 되어 있다. 예를들면 어떤 수의 다음 수를 계속 따라가는 것으로 다시 되돌아오지 않는다는 등등...


좀 더 다른 비유를 해보면, 도미노가 있다. 도미노가 쭉 길게 있는데, 도미노는 한쪽 방향으로만 놓아져 있다. 그리고 도미노 하나를 쓰러뜨리면, 그 다음 도미노도 같이 쓰러진다. 쓰러진 도미노를 모두 모으면 자연수가 된다.


Domino Induction



사실 굳이 이렇게 더 어려운 비유을 한 이유는, 이것이 수학적 귀납법의 핵심 아이디어이기 때문이다.


수학적 귀납법

귀납법은, 가설을 세우고, 경험적 사실로 참/거짓을 판단하는 방법이다. 다시 말하면, "내가 본것들은 다 ~~하더라."이다.

귀납법의 예를 들어보자면

  • 내가 학교에서 본 모든 고양이는 검정색이다.
  • 그러므로, 학교에 있는 모든 고양이는 검정색일 것이다.

귀납법은 뭔가 흔히 아는 "논리적"이라고 말하는 것과는 차이가 있어 보인다. 수학적 귀납법은 귀납법이라는 이름을 가지고 있지만, 사실 귀납법과는 많이 다르다.

 



수학적 귀납법을 설명하자. 수식을 사용해서 쓰면 다음과 같다.

P(0)이고, 모든 자연수 k에 대해 P(k)->P(k+1)이면, 모든 n에 대해 P(n)이다.

 

쉽게 설명을 하면, n에 대한 명제에 대해, n = 0일때 참이고, n = k+1이라는 것을, n = k가 참이라는 가정에서 증명할 수 있으면, 모든 n에 대해 명제가 참이라는 것이다. 이 설명은 어려워 보일 수 있어도, 이해를 하고 넘어갔으면 한다.

이해를 돕기 위해 추가적인 설명을 하자면, 가장 처음 도미노를 쓰러트릴 수 있고, 한 도미노가 쓰러졌을 때, 그 앞의 도미노도 쓰러진다면, 모든 도미노가 쓰러진다는 것이다. 이 사실은 굉장히 당연하게 보인다.

 

수학적 귀납법으로 많이 쓰이는 증명의 예시는 다음이 있다.:

1 + 3 + 5 + ... + ( 2n - 1 ) = n2

 

이 문제에 대한 증명은 다음과 같다:



n = 0일때: 0 = 02이라 성립한다. (왼쪽에 아무 수도 더해지지 않기 때문에, 0이라고 썼다. 혹시 헛갈린다면, n = 1로 시작한다고 생각해도 좋다.)


n = k+1일때: ( 1 + 3 + ... + ( 2k - 1 ) ) + ( 2( k + 1 ) - 1 ) = ( k2 ) + ( 2k + 1 ) = ( k + 1 )2 (첫번째 등호에서, n = k일때의 결과를 가져다 썼다. 두번째 등호에서는, k2 + 2k + 1 = ( k + 1 )2 라는 사실을 이용했다.)

 

n = 0일때 명제가 성립하고, n = k -> n = k+1이 성립하기 때문에, 수학적 귀납법에 의해서, 모든 n에 대해서 명제는 성립한다. 증명 끝.


 

 좀 더 쉽게 풀어 써보도록 하자.

 


n = 0일때: 0 = 02이라 성립한다.

n = 1일때: 1 = (0) + 1 = 02 + 2×0 + 1 = 12이라 성립한다.

n = 2일때: 1 + 3 = (1) + 3 = 12 + 2×1 + 1 = 22이라 성립한다.

n = 3일때: 1 + 3 + 5 = (1 + 3) + 5 = 22 + 2×2 + 1 = 32이라 성립한다.

n = 4일때: 1 + 3 + 5 + 7 = (1 + 3 + 5) + 7 = 32 + 2×3 + 1 = 42이라 성립한다.

n = 5일때: 1 + 3 + 5 + 7 + 9 = (1 + 3 + 5 + 7) + 9 = 42 + 2×4 + 1 = 52이라 성립한다.

...

같은 방법으로 모든 n에 대해서 성립한다.



위의 증명에서, 가장 처음에는, n = 0일때 등식이 성립한다는 것을 보이고, 두번째에는, 어떤 하나의 수에서 등식이 성립하면, 다음 수에서도 등식이 성립한다는 것을 보였다. (예를 들면, 1 + 3 + 5 + 7 + 9를 계산 할 때, (1 + 3 + 5 + 7) = 42이라는 사실을 가져다 썼다.) 그래서 우리는 이 논리적인 식들이 도미노 처럼 쓰러진다는 것을 알 수 있다.

 

사실, 우리는 2번 풀이같이 작은 n에 대해서 직접 확인해 보는 방법을 쓴다. 하지만, 논리적인 증명을 위해서는 2번 풀이에 있는 식을 잘 정리해서 1번처럼 식을 사용하는 방법을 알아야 한다. 직접 종이에 써보면서 풀어보는것을 권장한다.



 

수학적 귀납법에 대해 글을 썼다. 도미노를 생각하면 편하다. 프로그램의 증명에서 수학적 귀납법은 중요하게 사용되고, 뒤의 게시글에서 계속 사용될 내용이니, 꼭 알아두었으면 한다. 다음 게시글에는 Loop-invariant를 설명하려고 한다.


아래쪽에 풀어볼만한 연습문제들이 담겨있는 링크를 남겨놓겠다. 링크에 있는 연습문제는 좀 더 수학의 분야에 치우쳐져 있다. 풀이 등에 대한 질문이 있거나, 게시글에 개선할 사항은 덧글로 남겨줬으면 한다.




링크. http://mathsci.kaist.ac.kr/~sangil/home/wp-content/uploads/2015/01/induction.pdf




수정1. http://koosaga.com/190 에 링크에 대한 작성된 풀이가 일부 올라와 있다.




이제까지의 모든 Logical Thinking 게시글 보기: http://blog.kyouko.moe/8


+ Recent posts